Trigonometry

The Unit Circle

The unit circle is a circle of radius 1 centered at the origin, the point (0,0). Given a point (x, y) on the perimeter of the unit circle, there is a ray¹ from the origin to (x, y). This ray together with the ray from the origin to (1,0) forms an angle θ (measured counterclockwise) such that $x = \cos \theta$ and $y = \sin \theta$. The converse is also true.

For example to find the cosine of $\frac{\pi}{6}$, find the ray that forms $\frac{\pi}{6}$ with the ray from the origin to (1,0). The coordinate of the intercection of the ray and the perimeter of the circle is $(\frac{\sqrt{3}}{2}, \frac{1}{2})$ and therefore $\cos \frac{\pi}{6} = \frac{\sqrt{3}}{2}$.

¹Given two distinct points A and B the ray from A to B is the set of points C in the line that contains A and B such that A is not strictly between B and C.

Trigonometry

Converting Between Degrees and Radians

To convert between degrees and radians we use the fact that π radians= 180°. To convert an angle α from radians to degrees, multiply α by $\frac{180}{\pi}$. So α radians = $\alpha \cdot \frac{180}{\pi}$ degrees. Similarly to convert an angle β from degrees to radians, multiply β by $\frac{\pi}{180}$. So β degrees = $\beta \cdot \frac{\pi}{180}$ radians.

Sine, Cosine and Tangent

In the case of a right triangle, given a non-right angle θ

 $\sin \theta = \frac{\text{opposite}}{\text{hypotenuse}}$ $\cos \theta = \frac{\text{adjacent}}{\text{hypotenuse}}$ $\tan \theta = \frac{\text{opposite}}{\text{adjacent}}$

Laws of Cosines and Sines

Given any triangle with sides a, b, c and opposite angles A, B, C respectively, we have

Law of Cosines: $c^2 = a^2 + b^2 - 2ab \cos C$ Law of Sines: $\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}$

Trigonometric Identities

$$\tan \theta = \frac{\sin \theta}{\cos \theta}$$
$$\sin^2 \theta + \cos^2 \theta = 1$$
$$\sin 2\theta = 2\sin \theta \cos \theta$$
$$\cos 2\theta = 1 - 2\sin^2 \theta$$