Trigonometry

The Unit Circle

The unit circle is a circle of radius 1 centered at the origin, the point $(0,0)$. Given a point (x, y) on the perimeter of the unit circle, there is a ray ${ }^{1}$ from the origin to (x, y). This ray together with the ray from the origin to $(1,0)$ forms an angle θ (measured counterclockwise) such that $x=\cos \theta$ and $y=\sin \theta$. The converse is also true.

For example to find the cosine of $\frac{\pi}{6}$, find the ray that forms $\frac{\pi}{6}$ with the ray from the origin to $(1,0)$. The coordinate of the intercection of the ray and the perimeter of the circle is $\left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right)$ and therefore $\cos \frac{\pi}{6}=\frac{\sqrt{3}}{2}$.

[^0]
Converting Between Degrees and Radians

To convert between degrees and radians we use the fact that π radians $=180^{\circ}$. To convert an angle α from radians to degrees, multiply α by $\frac{180}{\pi}$. So α radians $=\alpha \cdot \frac{180}{\pi}$ degrees. Similarly to convert an angle β from degrees to radians, multiply β by $\frac{\pi}{180}$. So β degrees $=\beta \cdot \frac{\pi}{180}$ radians.

Sine, Cosine and Tangent

In the case of a right triangle, given a non-right angle θ

$$
\begin{aligned}
& \sin \theta=\frac{\text { opposite }}{\text { hypotenuse }} \\
& \cos \theta=\frac{\text { adjacent }}{\text { hypotenuse }} \\
& \tan \theta=\frac{\text { opposite }}{\text { adjacent }}
\end{aligned}
$$

Laws of Cosines and Sines

Given any triangle with sides a, b, c and opposite angles A, B, C respectively, we have

Law of Cosines: $c^{2}=a^{2}+b^{2}-2 a b \cos C$
Law of Sines: $\frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c}$

Trigonometric Identities

$$
\begin{gathered}
\tan \theta=\frac{\sin \theta}{\cos \theta} \\
\sin ^{2} \theta+\cos ^{2} \theta=1 \\
\sin 2 \theta=2 \sin \theta \cos \theta \\
\cos 2 \theta=1-2 \sin ^{2} \theta
\end{gathered}
$$

[^0]: ${ }^{1}$ Given two distinct points A and B the ray from A to B is the set of points C in the line that contains A and B such that A is not strictly between B and C.

