A quadratic equation is a polynomial of the form $a \mathrm{x}^{2}+b \mathrm{x}+c$, where a, b, and c are constant values called coefficients. You may notice that the highest power of x in the equation above is x^{2}. A quadratic equation in the form $a \mathrm{x}^{2}+b \mathrm{x}+c$ can be rewritten as a product of two factors called the "factored form". This form resembles ($\mathrm{x}+$?)($\mathrm{x}+$?) and is useful in determining the x-intercepts of a parabola, the graph of a quadratic equation. Factoring a quadratic polynomial can be frustrating, but the techniques described below may provide some assistance.

The Simple Case ($a=1$)
For the simple case, $a=1$, you will find two numbers that multiply to equal c, and add together to equal b. For example:

- Factor $x^{2}+5 x+6$

We need to find factors of 6 (the c term) that add up to 5 (the b term). Since 6 can be written as the product of 2 and 3 , and since $2+3=5$, we'll use 2 and 3 . This quadratic is formed from multiplying the two factors $(x+2)(x+3)$.

- If c is positive, the signs of both factors are the same as the b term.
- If c is negative, the signs of both factors are opposites, and the largest factor is the same sign as the b term.

The Not As Simple Case ($a \neq 1$)

The Box Method can be used to factor quadratics, including the simple case, but it is very useful when $a \neq 1$. Be sure to have the quadratic in its simplest form.

- Factor $4 x^{2}+4 x-15$

1) Make a box and divide it into 4 squares:

2) Put the $a x^{2}$ term in the top left corner:

3) Put the c term in the bottom right corner:

$4 \mathrm{x}^{2}$	
	-15

4) Multiply both terms ($a x^{2}$ and $\left.c\right) \rightarrow$ generate a list of factors.

$$
\begin{aligned}
& 4 x^{2} \cdot-15=-60 x^{2} \rightarrow \pm 2 x, \pm 30 x \\
& 3 x, \quad 20 x \\
& 4 \mathrm{x}, \quad 15 \mathrm{x} \\
& 5 x, \quad 12 x \\
& 6 x, \quad 10 x
\end{aligned}
$$

5) Determine which sum or difference of these factors will give you the $b x$ term:

$$
b x=4 x \rightarrow-6 x+10 x=4 x
$$

6) Put these terms in the remaining boxes:

$4 x^{2}$	$-6 x$
$10 x$	-15

7) Factor out common terms to the outside of the box:

$$
2 \mathrm{x} \quad-3
$$

| $4 x^{2}$ | $-6 x$ |
| :--- | :--- |\quad| $2 x$ |
| :--- |
| $10 x$ |$-15 \quad 5$

8) Read factors from the sides of the box:

$$
(2 x-3)(2 x+5)
$$

9) Double check-each box will be a product of the outside terms.

When we have a quadratic equation in the form $a \mathrm{x}^{2}+b \mathrm{x}+c=0$, we can find the value(s) of x where $\mathrm{y}=0$ by plugging the coefficients (a, b, and c) into this formula to solve the equation:

$$
\mathrm{x}=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

The quadratic formula can be used for any quadratic equation in the form $a \mathrm{x}^{2}+b \mathrm{x}+c=0$ and will yield solutions that need not be whole numbers.

For example: $2 \mathrm{x}^{2}+3 \mathrm{x}-1=0 ; \quad a=2, b=3, c={ }^{-} 1$

Note that the equation gives two values for x. These values represent the x intercepts. You may also notice that the quadratic formula contains the expression $b^{2}-4 a c$ under the square root. This expression is called the discriminant. The discriminant is an indicator of how many real solutions are possible. If the discriminant is greater than 0 (positive), there are two real solutions. If the discriminant is equal to 0 , there is one real solution. If the discriminant is less than 0 (negative), there are no real solutions.

