Undergraduate Research in Scientific Inquiry

Fall 2016, Winter 2017, and Spring 2017 quarters

Taught by

geology, earth science, biogeochemistry
physical chemistry
biology, genetics, microbiology
Brian Walter
mathematics, computer science, improvisational theater
Clarissa Dirks
biology, virology, molecular biology
genetics, molecular biology
Robin Forbes-Lorman
behavioral neuroendocrinology, molecular neuroscience, physiological psychology
mathematics, physics
organic chemistry
computer science, mathematics
James Neitzel
biology, biochemistry
veterinary medicine
Photo of Riley Rex
physical chemistry, spectroscopy, materials science
organic chemistry, polymer chemistry, biochemistry
computer science
physical and inorganic chemistry
mathematics, computer science
marine science
EJ Zita
physics, math, astrophysics
  • UG

Rigorous quantitative and qualitative research is an important component of academic learning in Scientific Inquiry. Research opportunities allow science students to work on specific projects associated with faculty members’ expertise. Students typically begin by working in an apprenticeship model with faculty or laboratory staff and gradually take on more independent projects within the context of the specific research program as they gain experience. Students can develop vital skills in research design, data acquisition and interpretation, modeling and theoretical analysis, written and oral communication, collaboration and critical thinking. These are valuable skills for students pursuing a graduate degree or entering the job market.

Faculty offering undergraduate research opportunities are listed below. Contact them directly if you are interested.

Abir Biswas (geology, earth science) studies nutrient and toxic trace-metal cycles in terrestrial and coastal ecosystems. Potential projects could include studies of mineral weathering, wildfires, and mercury cycling in ecosystems. Students could pursue these interests at the laboratory scale or through field-scale biogeochemistry studies, taking advantage of the Evergreen Ecological Observation Network (EEON), a long-term ecological study area. Students with backgrounds in a combination of geology, biology, or chemistry can gain skills in soil, vegetation, and water collection and learn methods of sample preparation and analysis for major and trace elements.

Andrew Brabban (biotechnology) studies the physiology and biochemistry of prokaryotes of industrial and agricultural importance. Students who commit at least a full year to a research project, enrolling for 4 to 16 credits each quarter, will learn a broad range of microbiology (both aerobic and anaerobic techniques), molecular (DNA analysis and cloning), and biochemical techniques (chemical and pathway analysis, protein isolation). Students will also have opportunities for internships at the USDA and elsewhere, and to present data at national and international conferences.

Dharshi Bopegedera (chemistry) would like to engage students in two projects: (1) There is concern that toxic metals are found in unsafe quantities in children’s toys and cosmetics. She would like to engage a student in the quantitative determination of these metals, using the AA and the ICP-MS. Students who are interested in learning to use these instruments and quantitative analysis techniques will find this project interesting. (2) Science and education. With Dharshi, students will work with local teachers to develop lab activities that enhance the science curriculum in local schools. Students with an interest in teaching science who have completed general chemistry with laboratory would be ideal for this project. (3) Dharshi is also interested in looking at chemicals present in e-cigarettes. A student interested in this project could work on the organic or inorganic chemicals.

Clarissa Dirks (biology) conducts research in many areas of microbiology and ecology. Her recent work in microbiology has focused on the biodiversity and distribution of tardigrades in different ecosystems. She also aims to better understand the evolutionary principles that underlie the emergence, spread, and containment of infectious disease by studying the co-evolution of retroviruses and their hosts. Lastly, she is conducting snail surveys in Washington state to better characterize the species in the state, something that hasn’t been done in many decades. Depending on the project, students will gain experience in molecular biology techniques, microbiology, field ecology, genetics, bioinformatics, and tissue culture.

Robin Forbes-Lorman (biology) is interested in neurobiology, molecular neuroscience, and cell physiology. She uses C. elegans (roundworms) as a model organism. Potential student projects include investigating a C. elegans gene that is homologous to a human gene, potentially one that is implicated in human disease. They will use bioinformatics tools and primary literature to learn about their gene’s function in humans and worms, and will use molecular biology lab techniques to determine how the disruptions in the gene affects worm’s phenotype. Students can also investigate the impact of environmental stressors on gene expression, development, and behavior. Through these projects, students have the opportunity to gain experience in relevant techniques including RNA interference, Western immunoblotting, bioinformatics, and behavioral analysis.

David McAvity (mathematics) is interested in problems in mathematical biology associated with population and evolutionary dynamics. Students working with him will help create computer simulations using agent-based modeling and cellular automata and analyzing non-linear models for the evolution of cooperative behavior in strategic multiplayer evolutionary games. Students should have a strong mathematics or computer science background.

LydiaMcKinstry (organic chemistry) is interested in organic synthesis research, including asymmetric synthesis methodology, chemical reaction dynamics, and small molecule synthesis. One specific study involves the design and synthesis of enzyme inhibitor molecules to be used as effective laboratory tools with which to study the mechanistic steps of programmed cell death (e.g., in cancer cells). Students with a background in organic chemistry and biology will gain experience with the laboratory techniques of organic synthesis,as well as the techniques of spectroscopy.

Donald Morisato (biology) is interested in the developmental biology of the Drosophila embryo, a model system for analyzing how patterning occurs. Maternally encoded signaling pathways establish the anterior-posterior and dorsal-ventral axes. Individual student projects will use a combination of genetic, molecular biological, and biochemical approaches to investigate the spatial regulation of this complex process.

Jim Neitzel (biochemistry) uses methods from organic and analytical chemistry to study biologically interesting molecules. A major focus of his current work is on fatty acids; in particular, finding spectroscopic and chromatographic methods to identify fatty acids in complex mixtures and to detect changes that occur in fats during processing or storage. This has relevance both for foods and in biodiesel production. The other major area of interest is in plant natural products, such as salicylates. Work is in process screening local plants for the presence of these molecules, which are important plant-defense signals. Work is also supported in determining the nutritional value of indigenous plants. Students with a background and interest in organic or analytical biochemistry will contribute to this work.

Neal Nelson (computer science) is interested in working with advanced computer topics and current problems in the application of computing to the sciences. His areas of interest include simulations of advanced architectures for distributed computing, advanced programming languages and compilers, and programming languages for concurrent and parallel computing.

Mike Paros (physiology, microbiology, veterinary medicine) is interested in animal health, diseases that affect the animal agriculture industry, and basic ecology of bacteriophage in physiologic systems. Currently funded research includes the development of bacteriophage therapy for dairy cattle mastitis. A number of hands-on laboratory projects are available to students interested in pursuing careers in science, with a particular emphasis on microbiology.

Riley Rex (materials science, chemistry) is interested materials science for solar energy applications.  In this project, his goal is to fabricate solar cells and measure their performance while exploring the effects of various methods to increase light absorbance. We will use a variety of wet-chemistry, physical vapor deposition, and thermal techniques to synthesize nanoparticles which will be characterized by absorbance spectroscopy and electron microscopy. The nanoparticles will then be incorporated into a complete solar cell device and voltage and current measurements will be used to calculate an overall power efficiency for the device. Theories associated with the optical and electronic properties of nanoparticles and proper device characterization can also be explored. The project is available to advanced students with chemistry, physics, and/or material science backgrounds.

Paula Schofield (organic, polymer, materials chemistry) is interested in the interdisciplinary fields of biodegradable plastics and biomedical polymers. Research in the field of biodegradable plastics is becoming increasingly important to replace current petroleum-derived materials and to reduce the environmental impact of plastic wastes. Modification of starch through copolymerization and use of bacterial polyesters show promise in this endeavor. Specific projects within biomedical polymers involve the synthesis of poly (lactic acid) copolymers that have potential for use in tissue engineering. Students with a background in chemistry and biology will gain experience in the synthesis and characterization of these novel polymer materials. Students will present their work at American Chemical Society (ACS) conferences.

Sheryl Shulman (computer science) is interested in working with advanced computer topics and current problems in the application of computing to the sciences. Her areas of interest include advanced programming languages and compilers, programming language design, programming languages for concurrent and parallel computing, and logic programming.

Rebecca Sunderman (inorganic/materials chemistry, physical chemistry) is interested in the synthesis and property characterization of new bismuth-containing materials. These compounds have been characterized as electronic conductors, attractive activators for luminescent materials, second harmonic generators, and oxidation catalysts for several organic compounds. Traditional solid-state synthesis methods will be utilized to prepare new complex bismuth oxides. Once synthesized, powder x-ray diffraction patterns will be obtained and material properties such as conductivity, melting point, biocidal tendency, coherent light production, and magnetic behavior will be examined when appropriate.

Brian Walter (mathematics) is interested in problems relating to graphs, combinatorial games, and especially, combinatorial games played on graphs. He would like to work with students who have a strong background in mathematics and/or computer science and are interested in applying their skills to open-ended problems relating to graphs and/or games.

Richard Weiss (computer science, mathematics) has several ongoing projects in computer vision, robotics, and security. There are some opportunities for students to develop cybersecurity games for teaching network security concepts and skills. In robotics, he is looking for students to develop laboratory exercises for several different mobile robotic platforms, including Scribbler, LEGO NXT and iRobot Create. This would also involve writing tools for image processing and computer vision using sequences of still images, video streams and 2.5-D images from the Kinect. In addition, he is open to working with students who have their own ideas for projects in these and related areas, such as machine learning, artificial intelligence, and analysis of processor performance.

Pauline Yu (marine science) studies the developmental physiology and ecology of marine invertebrates. She is interested in the biochemistry of the seawater-organism interface, developmental nutritional biochemistry and metabolic depression, invasive species, carbonate chemistry (ocean acidification), and cultural relationships with foods from the sea. Students have the opportunity to collaboratively develop lines of inquiry for lab and/or field studies in ecology, developmental biology, physiology, marine carbonate chemistry and mariculture.

EJ Zita (physics), who has expertise in energy physics, modeling, and organic farming, is researching sustainability and climate change. Many students have done fine projects on sustainable energy and food production in her academic programs. Zita is working with Judy Cushing and Scott Morgan to establish a new research program at Evergreen. She and Cushing will model land use impacts on climate change; she and Morgan will plan and facilitate sustainability projects on campus. More information on Zita's research is available at .

Program Details

Fields of Study

biochemistry biology chemistry computer science marine science mathematics physics

Preparatory For

biology, chemistry, physics, computer science, astronomy, and applied mathematics.


Fall Signature Winter Signature Spring Signature

Location and Schedule

Campus Location


Time Offered


Online Learning

No Required Online Learning

May be offered again in